Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

BS

11/03/22

CONTINUOUS INTERNAL EVALUATION - 3

Dept:BS	Sem / Div:	Sub: Transform Calculus, Fourier	S Code:		
	III/A&B	Series ad Numerical Techniques	18MAT31		
Date: 16/03/2022	Time: 9:30-11:00 am	Max Marks: 50	Elective: N		

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's					
	PARTA								
1 a	Using Taylor's series Method, find the solution at $x=0.1$ of $\frac{dy}{dx}=x-y^2$, $y(0)=1$ considering upto fourth		L2	CO4					
	degree term								
b	Solve $\frac{dy}{dx} = x + \sqrt{y} $, $y(0) = 1$ at $x = 0.4$ by taking	100000000000000000000000000000000000000	L2	CO4					
	h=0.2 using Modified Euler's Method, carry out two iterations in each step.								
(Apply Milne's Predictor corrector formula to compute $y(2.0)$ given $\frac{dy}{dx} = \frac{1}{2}(x+y)$ with $y(0)=2$	100000000000000000000000000000000000000	L2	CO4					
	y(0.5)=2.6360, $y(1.0)=3.5950$, $y(1.5)=4.9680$								
	OR								
2 8	Use Modified Euler's Method to compute y(0.1), given	8	L2	CO4					
	that $\frac{dy}{dx} = x^2 + y$, $y(0) = 1$ by taking h=0.05.Perform	1							
	two approximations in each step.								
1	Use Runge Kutta Method of fourth order to solve	8	L2	CO4					
	Page: 1/2								

								1	
	$(x+y)\frac{dy}{dx}=1$, $y(0.4)=1$ to find $y(0.5)$ take as h=0.1								
c Given $y'=x^2(1+y)$, $y(1)=1$, $y(1.1)=1.2330$, $y(1.2)=1.5480$, $y(1.3)=1.9790$, Find $y(1.4)$ using Adam's Bashforth Method							9	L2	CO4
	PART B								
3	a	Find the	curve	on wh	ich the	functional	8	L3	CO5
	$\int_{0}^{1} [(y')^{2} + 12xy] dx \text{can be extremised with } y(0) = 0,$ $y(1) = 1$								
	b Apply Milne's Predictor Corrector Method to compute $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ at y(0.4) with the initial values in table.						8	L2	CO4
		x	0	0.1	0.2	0.3			
		у	1	1.1103	1.2427	1.3990			
		y'	1	1.2103	1.4427	1.6990			
	c	Prove that of	rendesics	of a plane su	rface are st	raight lines	9	To	COS
		21010 4141 8	500 de Sie S		OR	aight mics.	9	L3	CO5
4	a	Find th	e ext	tremal of		functional	0	12	COS
	a Find the extremal of the functional $\int_{x_1}^{x_2} [(y')^2 + y^2 + 2y e^x] dx$						8	L3	CO5
	b Given y"-xy'-y=0 with the initial conditions y(0)=1 and y'(0)=0. Compute y(0.2) using Runge Kutta Method.						8	L2	CO4
Derive Euler's equation in the standard form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left[\frac{\partial f}{\partial y'} \right] = 0$						9	L3	CO5	

Prepared by: Madhavi R Pai

HOD: Prof. M Ramananda Kamath

Page: 2/2